Fine-grained Access Control
for EPC Information Services

Eberhard Grummt!2 and Markus Miiller?

1 SAP Research CEC Dresden
eberhard.oliver.grummt@sap.com
2 Technische Universitit Dresden
markus.mueller@mailbox.tu-dresden.de

Abstract. Inter-organizational exchange of information about physical
objects that is automatically gathered using RFID can increase the trace-
ability of goods in complex supply chains. With the EPCIS specification,
a standard for RFID-based events and respective information system in-
terfaces is available. However, it does not address access control in de-
tail, which is a prerequisite for secure information exchange. We propose
a novel rule-based, context-aware policy language for describing access
rights on large sets of EPCIS Events. Furthermore, we discuss approaches
to enforce these policies and introduce an efficient enforcement mecha-
nism based on query recomposition and its prototypical implementation.

1 Introduction

RFID is quickly becoming a key technology for novel supply chain management
applications. It enables the automatic identification (Auto-ID) of physical ob-
jects equipped with small transponder tags. In intra-organizational scenarios,
RFID’s advantages over the established bar code regarding efficiency and data
granularity have been used for several years. In inter-organizational settings, the
technology’s main potential is to increase the visibility of goods along the whole
supply chain. While gathering and exchanging object-related information does
not pose a general challenge using technology available today, several security
and incompatibility issues remain unsolved.

With the industry organization EPCglobal Inc.?, there is a strong initia-
tive towards overcoming incompatibilities between companies’ RFID-related IT
infrastructures. EPCglobal fosters open data format and interface standards.
Besides tag data specifications, the most important standard for inter-organiza-
tional data exchange is the EPC Information Services (EPCIS) specification [§].
Software systems implementing this specification, called EPCIS Repositories,
feature standardized interfaces for capturing and querying EPC-related event
and meta data. Since EPCIS Repositories hold mission-critical, potentially con-
fidential information, access to these interfaces needs to be limited. The EPCIS

3 http://www.epcglobalinc.org/, EPC stands for Electronic Product Code

standard explicitly leaves the details how access control is performed to the
individual EPCIS implementations [8, pp. 57-58].

In this paper, we present an approach to specify and enforce fine-grained
access rights to large quantities of EPCIS event information. Our contribution
is twofold. First, we introduce a novel access control policy language called AAL
leveraging the structure of EPCIS data. Second, we present an efficient policy
enforcement mechanism and its implementation that is based on the concept
of SQL query rewriting for relational databases. To our best knowledge, access
control for EPCIS data has not been addressed by scientific literature so far. The
remainder of this paper is structured as follows: We present the problem state-
ment, assumptions and challenges in Section 2. We give an overview of related
work in Section 3. In Section 4, we introduce requirements and our concepts for a
policy definition language and an efficient enforcement mechanism. We evaluate
our results in Section 5 and conclude in Section 6, giving directions for future
research.

2 Problem Statement

We investigate how access control policies for EPCIS Repositories can be defined
and enforced efficiently in order to facilitate fine-grained disclosure control for
RFID-based events.

2.1 Definitions and Assumptions

Let C = {ec1,...,cn} be a set of companies, each of which operates an EPCIS
Repository or an EPCIS Accessing Application [27, p. 41]. We assume that ev-
ery ¢, € C can be reliably identified and authenticated by every other company
¢ € C. An EPCIS Repository operated by any company c,, stores only EPCIS
Events generated by this company, i.e. information gathered from remote sources
is mot integrated into c¢,;,’s repository. A principal can be any participating user,
administrator, role, company, or system [2, p. 9]. In our context, a user is a prin-
cipal that belongs to a company ¢, and tries to access a remote EPCIS operated
by a company ¢, using an Accessing Application. An administrator is a principal
that is allowed to grant and revoke access rights to an EPCIS Repository. We
refer to Access Control (AC) as the process of enforcing an applicable Access
Policy. An Access Policy (policy for short) is a formal specification that states
which user or role has the right to access which EPCIS Events. An Access Con-
trol Mechanism or Enforcement Mechanism (mechanism for short) is a software
component ensuring that relevant policies are applied to all access operations
carried out by users, prohibiting or limiting disclosure if necessary.

2.2 Introduction to EPCIS

EPCIS Repositories store information about physical objects. This information
is logically represented in the form of EPCIS FEvents. Generally, an event rep-
resents a change in state that occurs at a certain point in time. The EPCIS

specification defines four event types, namely ObjectEvent, AggregationFEvent,
QuantityFEvent, and TransactionEvent. They are used to express object obser-
vations, object aggregations, object quantity observations, and connections of
objects and business transactions, respectively [8, pp. 39-53]. While the internal
processing and storage details may vary from implementation to implementa-
tion, an EPCIS Repository needs to provide two interfaces: The EPCIS Capture
Interface (CI) and the EPCIS Query Interface (QI). The CI is used to submit
new events to be stored in the repository, while the QI is used to retrieve events
of interest. Both interfaces can be implemented in the form of web services. To
that end, EPCglobal specifies HTTP and SOAP bindings [8, pp. 108-126].

2.3 Use Case and Challenges

To enable certain applications such as Tracking and Tracing (determining the
current and all previous locations of an object), companies need to access events
stored in EPCIS Repositories operated by other companies. EPCIS Events are
confidential, because they can be used to infer production capacities, inventory
levels, sales figures, and business relationships, among others. This is why access
control is a prerequisite for the inter-organizational EPCIS deployment.

I requests / responses requests / responses I
L 2 (N ¥
Accessing Application Query Interface Accessing Application
(EPCglobal standard)
¢ g
S
&) Storage z|3 S
=1
z (imple- glz z
< . < <
[=9 mentation wl o (=%
£ specific) G g £
=} T = |2 3
o %[O o
Capture Interface
(EPCglobal standard)
f
L \ data from internal RFID infrastructure))

Fig. 1. EPCIS Interfaces and Interactions

Fig. 1 depicts a company cy that operates an EPCIS Repository. Via its
Capture Interface, RFID-based events gathered locally by co are transferred to
a component responsible for their persistent storage. This storage component
is not specified by EPCglobal and can be implemented arbitrarily, for example
using relational or XML databases. The repository’s Query Interface is exposed
to external companies. Using Accessing Applications, companies such as ¢; and
cs can use this interface. An Access Control mechanism is depicted as a logical
component between the storage component and the Query Interface. Note that
c1 and c3 might operate EPCIS Repositories and ¢ might employ an Accessing
Application, too. This is not depicted for reasons of clarity.

As different business partners need different subsets of events to get their
work done and companies usually try to disclose only a minimum amount of
data, administrators need fine-grained means to define access rights. These access
rights depend on the content of the events themselves and may also refer to data
that is not stored yet, as new events are generated continuously. Instead of
static lists defining which event can be accessed by whom, such as ACLs used in
traditional AC systems, rules that are dynamically evaluated by the enforcement
mechanism are required. Rules can refer to the content of the events and to
contextual information such as business relationships and the current time. We
introduce further requirements in Section 4.1.

3 Related Work

While security research in the context of RFID has mainly focused on privacy
aspects, authentication, and secure reader-tag-communication [17,11,21], con-
fidentiality of RFID-based data after it has been captured and stored has not
received much attention so far [1]. At a first glance, sets of EPCIS Reposito-
ries can be considered distributed or federated databases, so respective access
control models and mechanisms [6] seem to be viable starting points. However,
the characteristics of the stored data and its volume pose new challenges [4, 23],
especially regarding access control [14].

A recent NIST study [15] gives an assessment of established access control
approaches. Popular models for non-military systems include Discretionary Ac-
cess Control (DAC) (as implemented in the form of Access Control Lists (ACLs)
[18] or Capabilities by popular operating systems), and Role-based Access Con-
trol [9]. The counterpart of DAC is formed by Non-Discretionary Access Control
models (NDAC) such as Mandatory Access Control (MAC) whose best-known
representative is the Bell-LaPadula model. Besides these established approaches,
that do not form a strict taxonomy and can actually be combined in a number
of ways, several application-specific security models and mechanisms have been
developed. Temporal aspects have been addressed in TRBAC [3], which focuses
on temporal availability and dependency of roles. Rule-Based Access Control
(RuBAC) is a general term to describe AC systems that grant or deny access to
resources based on rules defined by an administrator [15]. Research in the area
of context-sensitive access control, e.g. [16,12], strives to simplify access deci-
sions by using environmental sensor data or other information not intrinsic to
the system performing the AC. It is mainly focused on pervasive computing for
personal use and has not been applied extensively to supply chain management
before, even though approaches do exist [13].

Given the vast amount of data expected in future EPCIS Repositories [7,
23, 28], efficiency of the enforcement mechanism is an important issue. Since
for a long time, relational databases will probably remain the dominant storage
technology for such repositories, existing approaches to performing AC at the
database level are relevant. Oracle’s Virtual Private Databases [5] and Sybase’s
Row Level Security Model [25] use techniques similar to query rewriting [24],

basically adding predicates to each query to restrict the accessible rows and
columns. Hippocratic Databases (HDB) [19] primarily aim at protecting pa-
tients’ privacy in medical databases, but the concept can be applied to arbitrary
relational databases. Instead of query rewriting, HDB replace the tables a query
affects by prepared views. These views reflect the desired access policies in that
protected rows, columns, and cells are removed compared to the original table.
Our approach differs from all of the above in that we use an enhanced query
rewriting technique that not only extends the original query, but recomposes it
into several sub-queries in order to achieve flexible row, column, and cell based
restrictions specified by rule-based policy definitions.

4 Efficient Access Control for EPCIS Repositories

In this section, we introduce a rule-based, content and context aware Policy Lan-
guage for describing access rights to large amounts of RFID-based events. Based
on specific requirements, the language design and its semantics are described.
Furthermore, an enforcement mechanism based on query rewriting for relational
databases is introduced.

4.1 Requirements

Based on a number of case studies [4, 23, 28] and previous work [14], we identified
the following access control requirements:

Fine-grained disclosure control. Besides the ability to restrict access to cer-
tain events and event types, attribute-level restrictions need to be supported.

Content and context awareness. Access rights to events may depend on
their respective content, as well as on contextual (external) information such
as business relationships and temporal constructs.

Rules, range, and condition support. Because access rights are usually not
assigned to individual events but to (continuously growing) sets of events,
rules that may refer to ranges of events fulfilling certain conditions need to
be supported.

Automatic reduction of result sets. If a user queries more information than
he is authorized to access, the EPCIS repository has to return the respective
allowed subset of events, instead of denying the whole query.

Query power restriction. To prevent information leakage due to inference,
the query interface’s flexibility needs to be restrictable per user or role.
Rapid execution. Due to the expected amount of events, efficiency of the en-
forcement mechanism in terms of memory consumption and execution time

needs to be addressed.

4.2 AAL: A rule-based Policy Language for Auto-ID Events

Introductory Considerations Traditionally, each application or operating
system employs proprietary policy representations. Recently, there is a trend

towards expressing policies using XML [29]. Besides their inherent extensibility,
XML-based policy languages promise to be easier to read and edit and to offer
better interoperability. With OASIS XACML [26,20], an open industry stan-
dard for describing access policies using an XML-based language is available.
Nonetheless, we decided to develop an own policy language for the following
reasons. First, XACML’s general purpose approach trades flexibility against sim-
plicity. In our specific context, this clearly violates the principle of the “economy
of mechanism” [22]. Second, despite its name, XACML not only specifies a lan-
guage, but also an architecture how policies shall be evaluated and enforced. It
recommends the separation of the AC mechanism by using a Policy Decision
Point (PDP) and a Policy Enforcement Point (PEP). A PDP receives access
requests, evaluates them using applicable policies and returns one of four prede-
fined messages (Permit, Deny, NotApplicable, or Indeterminate). Based on such
messages, a PEP permits or denies user’s requests, issuing error messages if nec-
essary. There are two problems with this architecture. Because in our scenario,
access rights can be directly dependent on EPCIS Events’ attributes, the PDP
would have to access them in order to decide about requests. According to the
XACML specification, a Policy Information Point (PIP) provides access to such
external information. However, having to transfer large sets of events from the
storage engine via a PIP to the PDP would introduce significant overhead. Fur-
thermore, the property of XACML PDPs to only return one of four messages
would make the “automatic reduction of result sets” (cmp. 4.1) impossible.

Language Design The main concept of our policy language called AAL (Auto-
ID Authorization Language) is the notion of Shares. Each principal is assigned
a set of Shares he is authorized to access. A Share defines a subset of EPCIS
Events of a specific event type. Within a Share, all events disclosed to a user will
contain only the attributes enumerated for this particular Share. The events of
a Share are specified using a set of Conditions. Each Condition refers to exactly
one attribute. All Conditions have to be fulfilled for an event to appear in a
Share. Conditions are specified using Values that the respective attribute may
hold. Values can be defined by enumeration (e.g. single EPCs) or using ranges
and wildcards (such as EPC ranges and EPC patterns). These concepts can be
formulated as follows:

Authorization(Principal) := Share; U ... U Sharey,
Share(EventType, { Attry, ..., Attr;}) := Conditiony N ... N Condition,,
Condition(Attribute) := Valuey; U ... U Value,

The following example defines two Shares. They are depicted as dark cells
in Fig. 2. The table illustrates a subset of all ObjectEvents in a system, with
each row representing an event (more descriptive attributes such as EPC and
eventTime as well as content for all cells were omitted for reasons of clarity).

Share; (Object Event,{a,b,e, f}) = ((id € {1..4}) N (a € {12..16}))
Shares(Object Event, {b,c,d,e}) = ((id > 5) N (a < 20))

share, share,

f ! share,

id a b ¢ d e f g
11
12
13
14
15
16
17

share, {

share, {

Fig. 2. Visualization of Shares

N[||| —

Language Semantics and Properties Our policy language is based on white-
listing, i.e. everything that is not explicitly allowed is prohibited. This follows
the principle of “Fail-safe defaults” [22]. While not preventing unwanted informa-
tion leakage due to misconfigurations, this approach makes determining who is
allowed to access which events much easier. If Shares containing different sets of
attributes overlap (i.e. certain events are in more than one Share), the affected
events will contain the union of the respective attributes. A policy can apply
to any number of users or roles. Furthermore, policies can extend other policies
additively. The structure and semantics of the policy language are illustrated in
Fig. 3. Policy instances can be serialized in an XML dialect we defined using
XML Schema.

Policy
hasName name
appliesTo (user|role)+
extendsPolicies (policyName)*
contains (Share
refersTo eventType
contains (visibleAttribute)+
fullfillsAll (Condition
refersTo eventAttribute|contextAttribute
matchesAny (Value)+
) *
)+

Fig. 3. Structure and semantics of the policy language

Support for Contextual Information Using event’s attributes such as EPC,
eventTime, readPoint, or businessStep together with authorization rules allows
for the specification of flexible policies. However, in certain situations contex-
tual information extrinsic to the events is needed for authorative decisions. A
built-in function to refer to the current time is now(). Using this function,
a user can be granted temporally limited access to certain events by speci-
fying relative time intervals. For example, he might be allowed to access all
events from a certain business location that are not older than two days. Fur-
thermore, a Condition may refer to a contextAttribute. Such attributes can
be provided by external Context Providers and can be referenced in the form
contextProvider.contextAttribute. For example, Context Providers can be
used to retrieve the current user’s identity and transactional information in order
to base access control on business relationships.

4.3 An Efficient Enforcement Mechanism using Query Rewriting

Our enforcement mechanism is based on the assumption that EPCIS Events are
stored inside relational databases. This assumption is valid because currently
there is no alternative capable of inserting, storing and querying large amounts
of structured data with acceptable performance.

Client Accessing Application

I Client Query (Web Service request) EPCIS response (Web Service response)
v
Query Interface EPCIS
l Query (app. specific) Core Application
Query Preparation ESRSIHT ST Code
¢ Prepared Query (app. specific)

SQL Builder (2) Modify SQL Query Response Prepar. (6) Filter Results

l SQL Query T Results (app. specific)

Query Parser (3) Analyze/Rewrite SQL Response Prepar. (5) Filter Results

Security Layer

EPCIS Repository

Rewritten SQL Query

DB Results
Security Mechan. [RETNEEEIIEREA 9 Database

Fig. 4. Possible locations for AC mechanisms

Architectural Considerations Policy enforcement can be done at a number
of logical locations.

First, the user’s query submitted using the EPCIS Query Interface can be
restricted to affect only the results he is allowed to access. Due to the limited

expressiveness of the EPCIS QI, this would not work in many cases. For example,
the QI does not allow addressing multiple ranges of EPC at once.

Second, when an EPCIS Application builds an SQL query based on the user’s
request, it can enrich it with additional predicates that reflect the applicable
Policy. The advantage of performing AC using modified SQL queries is that the
performance and internal optimization mechanisms of existing databases can be
leveraged.

Third, an EPCIS Application can construct an unrestricted SQL query, and
instead of directly submitting it to the database driver, pass it through an ad-
ditional security layer. This layer would analyze the query and rewrite it ac-
cording to the respective policy. This has the advantage of encapsulating the
security-relevant application code instead of mixing it into the query generation
algorithm.

Fourth, built-in mechanisms of specific, proprietary database management
systems can be used. We discussed some candidates in Section 3.

Fifth, a security layer can filter all result sets returned by the database before
passing it on to the EPCIS application.

Sixth, this filtering can also be done by the EPCIS application itself.

Fig. 4 illustrates the six possibilities. Note that it does not depict an actual
architecture. The black boxes represent potential locations for the AC mecha-
nisms introduced above.

Translating Policies into Queries Our approach is based on rewriting an
original SQL query to only refer to the events in the intersection of the set the
user queried and the set he is authorized to access. As pointed out above, it
can either be implemented inside the EPCIS, extending the SQL query building
code, or in an external query analyzer /rewriter.

A Share definition can be translated into a relational algebra term as follows
(a denotes attributes, v values):

Sha’/‘(’,k = Tay,...,a; (U(al:v1\/‘..\/alzvm)/\(...)/\(a":va\/...\/an:vp) (EventType))
Similarly, it can be expressed in SQL:

SELECT ay,...,a; FROM EventType WHERE
(a1=vy OR ...0R a;=v,,) AND (a,=v, OR ...0OR a,=v,)

The union of all Shares Authorization = |J;_,(Sharey) defines the event subset
a user is authorized to access. The intersection of QueriedSet (the set he is try-
ing to retrieve using his query) and Authorization is the resulting event set to
be returned: ResultSet = Authorization N QueriedSet. This means that both
the Conditions and the attribute enumerations used to define Authorization
and QueriedSet need to be intersected.

To build actual SQL statements, separate SELECT statements reflecting these
intersections are constructed for each Share and combined using the UNION op-

erator. To keep the semantics of the events, the attributes also need to have the
same order in each SELECT statements. Upon executing the query, the database
will return the same events several times if they are contained in more than one
share. They are aggregated into one event afterwards by the application. Fig. 5
illustrates the necessary steps using pseudocode.

query = nn
for each Share {
Attributes = intersection(UserQuery.Attributes, Share.Attributes);
Attributes = addNullColumns(Attributes);
Conditions = removeUnauthorizedConditions
(UserQuery.Conditions, Attributes);
Conditions = insertContextValues(Conditions);
Conditions = "((" + Conditions + ") AND (" + Share.Conditions + "))";
if (!isFirst(Share)) { query += " UNION ALL "; }
query += "SELECT " + Attributes + " FROM " + tableName
+ " WHERE " + Conditions;
}
resultSet = execute(query);
return filterAndMergeDuplicates (resultSet);

Fig. 5. Pseudocode for Query Construction

For example, assume the following user query and two Share definitions (also
depicted in Fig. 6:

UserQuery; (ObjectEvent, {b,c,d}) = ((id > 1) N (id < 7))
Sharei(ObjectEvent, {a,b,e, f}) = ((id € {1..4}) N (a € {12..16}))
Shares(Object Event,{b,c,d,e}) = ((id > 5) N (a < 20))

They will result in the following SQL statement:

SELECT b, NULL AS c, NULL AS d FROM ObjectEvent WHERE
(id>1 AND id<7) AND ((id BETWEEN 1 AND 4)
AND (a BETWEEN 12 AND 16))

UNION ALL

SELECT b, c, d FROM ObjectEvent WHERE
(id>1 AND id<7) AND (id>5 AND a<20)

5 Evaluation

To evaluate our proposed policy language and mechanism, we implemented a
prototype showcasing its applicability. Furthermore, we discuss how the require-
ments formulated in 4.1 are met and how the design principles for secure systems
of Saltzer and Schroeder are reflected.

1 11

o 12 D User query
Share, 3 13 Authorization

4 14

- Result set

5 15
Share, 6 16

7 17

Fig. 6. Visualization of Shares and a user query

5.1 Practical Implementation

Our prototypical implementation is based on the Accada RFID prototyping plat-
form [10] written in the Java programming language. The Accada EPCIS imple-
mentation runs on an Apache Tomcat 5.5 server, exposing its interfaces as Web
Services based on the Apache Axis 1.4 library. For persistent storage, a MySQL
5.0 database and the JDBC library are employed. Accada’s Query Client allows
for querying the repository and displaying the returned events. We enhanced the
Query Client’s graphical interface by a user identity selection menu. Because au-
thentication was out of the scope of our work, this replacement for a password
or certificate mechanism is a viable simplification. For each user in the system,
the policy definition is stored in a separate XML file named <username>.pol.
To map the policy’s XML structures to Java objects, the library Simple* 1.4 was
used as a light-weighted alternative to JAXB. This way, extensions of the policy
language do not entail significant updates of the program code. We modified the
query generation code in Accada’s QueryOperationsModule. createEventQuery
method in the package org.accada.epcis.repository, constructing modified
SQL queries based on the general idea presented in Section 4.3. Fig. 7 shows a
screenshot of the Query Client, a policy definition and a part of a corresponding
result set.

Our experience with the implementation of access control into Accada is
twofold. First, it showed the technical feasibility of our approach. Reading XML-
based policy files and transforming the rules into SQL to restrict a user’s query
therefore works in practice. Accada proved to be a solid basis for EPCglobal
related prototyping activities. Second, the extension of Accada’s complex query
generation code turned out to be intricate. This is why architecturally, we con-
sider placing the query rewriting code into a separate module a better approach
(cmp. 4.3).

* http:/ /simple.sourceforge.net/

EEPCIS query interface client =l X||

0| E2 Query results

~Configuration e — ——
Event EPCs Business transaction acc
uery interface URL: |httpe flocanost-a0807e) [O2e0t :ur’n:apc:ld:gld:QEIDDIDD.SDDDDD.DDM: :urr\:epcg\nhalzfmcg:htt:asm http:fftrar\sact\nn.acma‘mm,iaan?E-Q: Fri Sep 14 02:0
| |Object 'urn:epc:id:gid:95100100.300000.0002" [urn:epcglobal:Frmeg:btt:asn, http://transaction. acme., comfasn/4769" |Fri Sep 14 02:0
o opc Object [urniepcridigid:95100100,300000.0001" 'urniepcglobal:Frcg:btt:asn, http:/ftransaction.acme, comjasni4769" |Fri Sep 14 02:0
: | Object [urniepc:id:gid:95100100, 200000.0004' Fri Sep 14 02:0
| (Object 'urn:epciid:gid:95100100.200000.0003' Fri Sep 14 02:0
| Subscribe Management 4 |object [urn:epriid:gid: 95100100, 2000000002 FriSep 14 02:0
) ! [Object 'urn:epc:id:gid:95100100,200000.0001" Fri Sep 14 02:0
Unsubscribe ID: | Datei (Object [rn:eperidigid: 95100100, 100000.0003 Frisep 14 02:0
Object 'urn:epcid:gid: 95100100, 100000.0002' Fri Sep 14 02:0
~Events ta be returned Q [: Chject [urniepcid:gid:95100100, 1000000001 Fri Sep 14 02:0
= M
k2wl version=r1.00 2>
[Queryargments————— |[Jepnliey user='epc' >
= <share visibleiAttributes='"epc,eventTime' eventTyps='"0bjectEvent':>
event time >= j' } = <condition attribute='epc'>
lﬁ I' “valus*urn: spe:id:gid: 25100100, [100000-200000] . *</ value>
</condition>
</share>
= <share visibkleAttributes="epc,eventTime, bizTrans" sventType="0ObjectEve:
=| <condition attribute="epc">

<valuerurn: epe:id:gid: 25100100, 300000, *</value>

[TP Y

Fig. 7. Screenshot of Query Client, policy definition and result set

5.2 Addressing the Challenges

Our policy language AAL and the respective enforcement mechanism supports
fine-grained Using a Share with one Condition, an individual event can be ad-
dressed (using suitable values for a simple or compound primary key). Because
for such a Share, every column can be addressed directly by enumeration, cell-
level control can be achieved.

Using our policy language, businesses can define context- and content-based
rules who is allowed to access which information. Especially the ability to define
relative time ranges and EPC patterns provides flexibility. At policy enforcement
time, contextual attributes can be inserted, so information that is not known at
policy design time can be included in the access decisions.

By intersecting the queried set and the authorized set, an automatic reduction
of the result sets is performed. This is very important, because using an EPCIS
compliant query interface, it is not possible for a user to tell the service that
he is not interested in certain attributes. This, if an AC mechanism rejected
all requests that refer to too many attributes, the user would not receive any
information in case of a single violated server-side attribute restriction.

Our mechanism restricts the query interface’s power by omitting user query
restrictions that refer to attributes that are not accessible for him. This is done
for each Share individually. However, this is just a basic restriction feature. To
prevent undesired information leakage in the face of malicious queries, further
investigations in the area of Inference Control would be needed.

Our query rewriting technique involves parsing the user query, resolving con-
text attributes and constructing the final SQL statement. These steps are done
once for each user request. The parsing of XML files only need to be performed
once after a policy has changed. The overhead for constructing the modified

SQL query therefore only consists of several string operations. The actual access
control is done by the database that executes the query. It can apply further
query optimizations, for example removing or combining redundant predicates.

To further evaluate our approach, we discuss the fulfillment of the seven
principles for secure systems of Saltzer and Schroeder [22]:

Economy of mechanism. Our design is simple, so this principle is fulfilled.
The policy language’s XML Schema definition comprises only 26 lines, com-
pared to 380 lines of the XACML 2.0 policy schema.

Fail-safe defaults. We base access decisions on permission rather than exclu-
sion, so this principle is fulfilled.

Complete mediation. We check every access for authority, so this principle is
fulfilled.

Open design. Our design is not secret, so this principle is fulfilled.

Separation of privilege. We do not provide a two key mechanism, so this
principle is not fulfilled.

Least privilege. The database runs at a higher security level than necessary
in some situations, so this principle is not fulfilled.

Least common mechanism. This principle is not applicable.

Psychological acceptability. Since we do not provide a human interface, this
principle is not applicable.

6 Conclusion and Future Work

Based on the access control requirements specific to Auto-ID based collaboration
scenarios, we have presented a novel policy language and an efficient enforcement
mechanism as well as their implementation. The policy language is expressed in
XML and reflects the notion that companies will most probably prefer defining
subsets of events to be shared using dynamic rules instead of static access control
lists.

We have shown that an enforcement mechanism could be implemented ei-
ther by restricting a user’s query or by filtering a result set. In order to leverage
relational databases’ optimized query execution and to avoid high memory con-
sumption, we argued that query rewriting is a viable approach. The techniques
we presented to modify queries can also be applied to the generation of database
views. These could increase query execution performance, possibly at the cost of
storage space (in the case of materialized views). We discussed that most of our
requirements can be met and that the system design reflects some “golden rules”
for secure systems. By providing a prototypical implementation, we proved the
plausibility of our approaches.

The outcome of our work are feasible means for administrators to restrict
access to single EPCIS Repositories based on the known identities or roles of
business partners. So far, this reflects the traditional paradigm of manually as-
signing rights to users of the system. However, in future dynamic supply chain
scenarios, companies who do not know each other beforehand might need to

share certain data, with restrictions such as temporal constraints. This is espe-
cially true for traceability queries, which a certain stakeholder uses to determine
all past locations and states of a given object or a class of objects. While we
have shown how the enforcement of concrete access policies can be realized, we
consider the management of such policies, including their generation, assign-
ment, revokation, and maybe delegation, a challenging and open research issue.
Counsidering the large amounts of both the information and the potential par-
ticipants, overcoming the need to manually define every single access policy is
highly desirable.

In our future work, we will target these issues as well as other access control
challenges in global traceability networks such as access control for discovery ser-
vices, inter-organizational role concepts and concepts for proving and delegating
attributes and permissions.

References

1. Rakesh Agrawal, Alvin Cheung, Karin Kailing, and Stefan Schonauer. Towards
Traceability across Sovereign, Distributed RFID Databases. In IDEAS ’06: Pro-
ceedings of the 10th International Database Engineering and Applications Sympo-
sium, pages 174-184, Washington, DC, USA, 2006. IEEE Computer Society.

2. Ross J. Anderson. Security Engineering: A Guide to Building Dependable Dis-
tributed Systems. John Wiley & Sons, Inc., New York, NY, USA, 2001.

3. Elisa Bertino, Piero Andrea Bonatti, and Elena Ferrari. TRBAC: A Temporal
Role-Based Access Control Model. In RBAC ’00: Proceedings of the fifth ACM
workshop on Role-based access control, pages 21-30, New York, NY, USA, 2000.
ACM Press.

4. Christof Bornhovd, Tao Lin, Stephan Haller, and Joachim Schaper. Integrating
Automatic Data Acquisition with Business Processes — Experiences with SAP’s
Auto-ID Infrastructure. In Proceedings of the 30th International Conference on
Very Large Data Bases, pages 1182-1188, 2004.

5. Kristy Browder and Mary Ann Davidson. The Virtual Private Database in Ora-
cle9iR2. Oracle Technical White Paper, Oracle Corporation, 500 Oracle Parkway,
Redwood Shores, CA 94065, U.S.A., January 2002.

6. Sabrina De Capitani di Vimercati and Pierangela Samarati. Access Control in
Federated Systems. In NSPW °’96: Proceedings of the 1996 workshop on New
security paradigms, pages 87-99, New York, NY, USA, 1996. ACM Press.

7. Hong-Hai Do, Jirgen Anke, and Gregor Hackenbroich. Architecture Evaluation
for Distributed Auto-ID Systems. In DEXA ’06: Proceedings of the 17th Inter-
national Conference on Database and Expert Systems Applications, pages 30-34,
Washington, DC, USA, 2006. IEEE Computer Society.

8. EPCglobal Inc. EPC Information Services (EPCIS) Version 1.0 Specification.
http://www.epcglobalinc.org/standards/

EPCglobal EPCIS_Ratified Standard 12April 2007 _V1.0.pdf, April 2007.

9. D.F. Ferraiolo and D.R. Kuhn. Role-based access controls. In 15th National Com-
puter Security Conference, pages 554-563, Baltimore, MD, October 1992.

10. Christian Floerkemeier, Matthias Lampe, and Christof Roduner. Facilitating RFID
Development with the Accada Prototyping Platform. In Proceedings of PerWare
Workshop 2007 at IEEE International Conference on Pervasive Computing and
Communications, New York, USA, March 2007.

11.

12.

13.

14.

15.

16.

17.

18.

19.

20.

21.

22.

23.
24.

25.

Simson Garfinkel, Ari Juels, and Ravi Pappu. RFID Privacy: An Overview of
Problems and Proposed Solutions. IEEE Security and Privacy, 3(3):34-43, May-
June 2005.

Christin Groba, Stephan Grof, and Thomas Springer. Context-Dependent Access
Control for Contextual Information. In ARES ’07: Proceedings of the The Second
International Conference on Awvailability, Reliability and Security, pages 155-161,
Washington, DC, USA, 2007. IEEE Computer Society.

Eberhard Grummt and Ralf Ackermann. Proof of Possession: Using RFID for
large-scale Authorization Management. In Max Mihlh&user, Alois Ferscha, and
Erwin Aitenbichler, editors, Constructing Ambient Intelligence: AmI-07 Workshops
Proceedings, LNCS. Springer-Verlag Berlin Heidelberg, 2008.

Eberhard Grummt, Markus Miiller, and Ralf Ackermann. Access Control: Chal-
lenges and Approaches in the Internet of Things. In Proceedings of the IADIS
International Conference WWW /Internet 2007, volume 2, pages 89-93, Vila Real,
Portugal, October 2007.

Vincent C. Hu, David F. Ferraiolo, and D. Rick Kuhn. Assessment of Access
Control Systems. Interagency Report 7316, National Institute of Standards and
Technology, Gaithersburg, MD 20899-8930, September 2006.

R. J. Hulsebosch, A. H. Salden, M. S. Bargh, P. W. G. Ebben, and J. Reitsma.
Context sensitive access control. In SACMAT ’05: Proceedings of the tenth ACM
symposium on Access control models and technologies, pages 111-119, New York,
NY, USA, 2005. ACM Press.

Ari Juels. RFID Security and Privacy: A Research Survey. IEEE Journal on
Selected Areas in Communication, 24(2):381-394, February 2006.

Butler Lampson. Protection. In Proceedings of the 5th Annual Princeton Confer-
ence on Information Sciences and Systems, pages 437-443, Princeton University,
1971.

K. LeFevre, R. Agrawal, V. Ercegovac, R. Ramakrishnan, Y. Xu, and D. DeWitt.
Limiting Disclosure in Hippocratic Databases. In Proceedings of the 30th Inter-
national Conference on Very Large Data Bases, pages 108-119, Toronto, Canada,
August 2004.

Markus Lorch, Seth Proctor, Rebekah Lepro, Dennis Kafura, and Sumit Shah.
First Experiences Using XACML for Access Control in Distributed Systems. In
XMLSEC °03: Proceedings of the 2003 ACM workshop on XML security, pages
25-37, New York, NY, USA, 2003. ACM Press.

Pedro Peris-Lopez, Julio Cesar Hernandez-Castro, Juan Estevez-Tapiador, and Ar-
turo Ribagorda. RFID Systems: A Survey on Security Threats and Proposed
Solutions. In 11th IFIP International Conference on Personal Wireless Commu-
nications — PWC’06, volume 4217 of Lecture Notes in Computer Science, pages
159-170. Springer-Verlag, September 2006.

J. H. Saltzer and M. D. Schroeder. The Protection of Information in Computer
Systems. In Proceedings of the IEEE, volume 63, pages 1278-1308, September
1975.

Sanjay Sarma. Integrating RFID. ACM Queue, 2:50-57, 2004.

Michael Stonebraker and Eugene Wong. Access control in a relational data base
management system by query modification. In ACM 74: Proceedings of the 1974
annual conference, pages 180-186, New York, NY, USA, 1974. ACM Press.
Sybase, Inc. New Security Features in Sybase Adaptive Server Enterprise. Tech-
nical Whitepaper, 2003.

26.

27.

28.

29.

Tim Moses (Editor). eXtensible Access Control Markup Language (XACML)
Version 2.0. http://docs.oasis-open.org/xacml/2.0 /access_control-xacml-2.0-core-
spec-os.pdf, February 2005.

Ken Traub, Greg Allgair, Henri Barthel, Leo Burstein, John Garrett, Bernie Hogan,
Bryan Rodrigues, Sanjay Sarma, Johannes Schmidt, Chuck Schramek, Roger Stew-
art, and KK Suen. The EPCglobal Architecture Framework — EPCglobal Final
Version of 1 July 2005. http://www.epcglobalinc.org/standards/Final-epcglobal-
arch-20050701.pdf, July 2005.

Fusheng Wang and Peiya Liu. Temporal Management of RFID data. In VLDB
"05: Proceedings of the 31st international conference on Very large data bases, pages
1128-1139. VLDB Endowment, 2005.

Mariemma I. Yagiie. Survey on XML-Based Policy Languages for Open Environ-
ments. Journal of Information Assurance and Security, 1:11-20, 2006.

